Final Exam

Abstract Algebra 1
18/06/2023

1. (1 point each)
(a) Let $f=(1,4,2,6)(3,8)$ and $g=(1,7,4,3,2,5,8) \in S_{8}$. Find $g^{-1} \circ f$.
(b) Find $F_{3} \circ F_{6}$ in D_{7}.
(c) Write all the cosets of A_{3} in S_{3}.
(d) Determine $\left[D_{4}: S_{4}\right]$.
(e) Let $G=\{(1,3,4)(2,6),(1,4,3),(2,6),(1,3,4),(1,4,3)(2,6), e\}$. Find $S_{G}(6)$.
(f) Let $G=\{(1,3,4)(2,6),(1,4,3),(2,6),(1,3,4),(1,4,3)(2,6), e\}$. Find $O_{G}(4)$.
2. (1 point each) Let $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{10}$ such that $f(n)=3 n$.
(a) What is the range of f ?
(b) Is f one-to-one? Why?
(c) Is f onto? Why?
(d) Find a counter-example to show f is not homomorphism.
3. (2 points each) True or False? And why?
(a) Is $U_{5} \approx U_{10}$? Why or why not?
(b) Is $U_{10} \approx U_{8}$? Why or why not?
4. (6 points) Let $f: G \rightarrow H$ be a group homomorphism.
(a) Prove that $\operatorname{ker}(f)$ is a subgroup of G.
(b) Prove that $\operatorname{ker}(f)$ is normal.
5. (5 points) Let H and K be subgroups of G with $|H|=15$ and $|K|=28$. Prove that $H \cap K=\{e\}$.
6. (5 points) Let G be a group and $H=\left\{x^{3} \mid x \in G\right\}$. Assume H is a subgroup. Prove that H is normal.
7. (5 points) Let G be a group with center $Z(G)$. Prove that if $x y \in Z(G)$, then $x y=y x$.
8. (5 points) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism with $\operatorname{ker}(f)=H$. Let $\mathcal{F}: G / H \rightarrow G^{\prime}$ such that $\mathcal{F}(H a)=f(a)$. Prove that \mathcal{F} is a homomorphism and prove it is one-to-one.
