Midterm Exam

Abstract Algebra 2

Choose 5 questions and write complete solution.

1. Prove that S is a subring of $M(2, \mathbb{R})$, where

$$
S=\left\{\left.\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}
$$

2. Prove that S is a subfield of \mathbb{R}, where

$$
S=\{x+y \sqrt{5} \mid x, y \in \mathbb{Q}\}
$$

3. Let R be a finite integral domain. Prove that R is a field.
4. Let R be a commutative ring and $c \in R$. Let I be an ideal of R, and let

$$
S=\{x \in R \mid x c \in I\}
$$

Prove that S is an ideal of R.
5. Let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ with principal ideal $I=((0,2))$.
(a) Construct the multiplication table for the factor $\operatorname{ring} R / I$.
(b) Find all the units and zero divisors in R / I.
6. Let $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ and $S=\left\{\left.\left(\begin{array}{cc}x & 2 y \\ y & x\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}\right\}$. (Given that R is a subring of \mathbb{R} and S is a subring of $M(2, \mathbb{Z})$.) Let $\theta: R \rightarrow S$ such that

$$
\theta(a+b \sqrt{2})=\left(\begin{array}{rr}
a & 2 b \\
b & a
\end{array}\right)
$$

Prove that θ is a ring isomorphism.

