Final Exam

Number Theory
05/02/2023

1. (4 points) Compute $9^{56} \% 11$ using SSA.
2. (4 points) Compute $9^{3723} \% 35$ using Euler's theorem.
3. (2 points) Evaluate $\phi(5616)$.
4. (4 points) Solve the root mod congruence $x^{13} \equiv 2(\bmod 23)$.
5. (2 points) Find $\left|3^{84}\right|_{19}$ given that 3 is primitive root mod 19 .
6. (2 points) Find all the primitive roots mod 22.
7. (4 points) Solve the discrete \log problem $19^{x} \equiv 21(\bmod 22)$. You may use your table from Question (6).
8. (2 points) Count how many primitive roots exist mod 541 (prime).
9. (4 points) Find the 4 solution classes of $x^{2} \equiv 37(\bmod 77)$.
10. (2 points) Prove that if a prime $p \equiv 3(\bmod 4)$, then -1 is NR $\bmod p$.
11. (2 points) Determine 32 is QR or NR $\bmod 101$.
12. (4 points) Evaluate the Legendre symbol $\left(\frac{101}{313}\right)$.
13. (4 points) Prove the theorem: Let $S=\left\{g, g^{2}, \ldots, g^{\phi(n)}\right\}$. Prove that S is RRS $\bmod n$ if and only if g is primitive root $\bmod n$.
14. (Bonus 3 points) Prove that if g is a primitive root mod a prime $p>2$, then $\left(\frac{g}{p}\right)=-1$.
