1. (3 points) Prove Euclid's Lemma: If $x \mid y z$ and $\operatorname{gcd}(x, y)=1$, then $x \mid z$
2. (3 points) Find all the integer solutions for $153 x-39 y=15$
3. (2 points) Let p be a prime. Prove that if $p \mid m^{3}$, then $p^{3} \mid m^{3}$
4. (2 points) Count how many divisors of the number 1728
5. (3 points) Use Fermat factorization algorithm to factor $n=10873$
6. (2 points) Compute $7^{-1} \% 25$
7. (4 points) Solve the system of linear congruences $\left\{\begin{array}{l}x \equiv 15(\bmod 25) \\ x \equiv 5(\bmod 9)\end{array}\right.$
8. (3 points) Prove the theorem: If $a \equiv b(\bmod n)$, then $n \mid a-b$
9. (4 points) Compute $43!\% 47$ using Wilson's theorem.
10. (4 points) Use SSA to compute $7^{98} \% 11$
11. (Bonus 2 points) Prove that if $a \equiv b(\bmod n)$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$
