Final Exam

Probability Theory

13/02/2023
Each problem is worth 4 points.

1. Two dice are rolled. Let $A=\{$ the sum is $>6\}$. Let $B=\{$ both are odd $\}$. Compute $P(A \cup B)$.
2. Given the distribution function $F(x)$, find $P(6<X<9)$.

$$
F(x)=\left\{\begin{array}{cl}
1-\frac{9}{x^{2}} & \text { for } x \geq 3 \\
0 & \text { for } x<3
\end{array}\right.
$$

3. Given the joint distribution function $F(x, y)$, find $P(1<X<2 ; Y \leq 2)$.

$$
F(x, y)=\left\{\begin{array}{cl}
1-e^{-x}-e^{-y}+e^{-x-y} & \text { for } x, y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

4. Given the joint probability density function $f(x, y)$. Compute the conditional density of Y given $\left(X=\frac{1}{2}\right)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{5}(2 x+y) & \text { for } 0<x<2 ; 0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

5. Given the joint probability density function $f(x, y)$. Find $P\left(X, Y<\frac{3}{2}\right)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{4}{3} x y & \text { for } 0<x<1 ; 1<y<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

6. Given the joint probability density function $f(x, y)$.

$$
f(x, y)=\left\{\begin{array}{cl}
4 x y & \text { for } x, y>0 ; x+y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Write the double integral for $P(X>Y)$. (ONLY the integral, do not compute).
7. Compute the covariance $\sigma_{X Y}$ given the joint probability density function

$$
f(x, y)=\left\{\begin{array}{cl}
x+y & \text { for } 0<x, y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

8. Given the discrete uniform distribution $f(x)=\frac{1}{4}$ with domain $x \in\{-1,0,1,2\}$. Compute μ and σ^{2}
9. Given that $\sigma_{X}^{2}=3, \sigma_{Y}^{2}=4, \sigma_{Z}^{2}=5$ and $\sigma_{X Y}=3, \sigma_{X Z}=-2, \sigma_{Y Z}=1$. Let $W=X+2 Y-3 Z$. Compute the variance σ_{W}^{2}.
10. Given the Pareto distribution $f(x)=\frac{2}{x^{3}}$ with domain $x \in(1, \infty)$. Compute μ and σ^{2}.
