Midterm Exam
All answers must be in reduced fractions or decimal with 4 significant digits.

1. (6pt) A coin is tossed 8 times.

Let $A=\{\#$ Heads $=5\}$ and $B=\{$ the first is Tails $\}$.
(a) Compute $P(A)$
(b) Compute $P(B)$
(c) Compute $P(A \cap B)$
(d) Compute $P(A \mid B)$
(e) Compute $P(A \cup B)$
(f) Prove A and B are dependent or independent.
2. (2pt) An airline flight has a probability 23% of getting delayed when it is raining, and 11% when not raining. The probability that tomorrow will rain is 88%. Find the probability that this flight will be delayed tomorrow.
3. (2pt) Assume that 80% of the Samsung mobile phones in the country come from China, 8% from Malaysia, and 12% from India. From China, an average 2.2% of the phones are defective, from Malaysia 2.9%, and from India 4.7%. Given that a phone is found defective, what is the probability it came from India?
4. (2pt) Given the probability density function $f(x)$. Compute $P\left(X>\frac{3}{4}\right)$

$$
f(x)=\left\{\begin{array}{cl}
5 x^{4} & \text { for } 0<x<1 \\
0 & \text { else }
\end{array}\right.
$$

5. (1pt) Given the discrete distribution function $F(x)$. Compute $P(X<3)$

$$
F(x)= \begin{cases}0 & \text { for } x<1 \\ \frac{1}{4} & \text { for } 1 \leq x<3 \\ \frac{3}{5} & \text { for } 3 \leq x<5 \\ 1 & \text { for } x \geq 5\end{cases}
$$

6. (2pt) Given the probability density function $f(x)$. Find $F(x)$.

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{4 \sqrt{x}} & \text { for } 1<x<9 \\
0 & \text { else }
\end{array}\right.
$$

7. (2pt) Given the distribution function $F(x)$. Compute $P(4.5 \leq X \leq 6)$

$$
F(x)=\left\{\begin{array}{cl}
1-\frac{9}{x^{2}} & \text { for } x \geq 3 \\
0 & \text { else }
\end{array}\right.
$$

8. (2pt) Given the joint probability distribution $f(x, y)=k\binom{6}{x+y}$ where $x \in\{3,4\}$ and $y \in\{1,2\}$. Find k
9. (3pt) Given the joint probability density function $f(x, y)$. Find k.

$$
f(x, y)=\left\{\begin{array}{cl}
k x y & \text { for } x, y>0 ; x+y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

10. (3pt) Given the joint probability density function $f(x, y)$. Find $F(x, y)$

$$
f(x, y)=\left\{\begin{array}{cl}
x+y & \text { for } 0<x, y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

11. (3pt) Given the joint probability density $f(x, y)$. Compute $P\left(X<1 ; Y \leq \frac{1}{2}\right)$

$$
f(x, y)= \begin{cases}2 & \text { for } x, y>0 ; x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

12. (3pt) Given the joint distribution function $F(x, y)$. Compute $P(X+Y<1)$

$$
F(x, y)=\left\{\begin{array}{cl}
1-e^{-x}-e^{-y}+e^{-x-y} & \text { for } x, y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

